SynDB Home Page
SynDB Home Page
Browse
Search
Download
Help
People
links

blue bulletSynDB protein details  


Parse error: syntax error, unexpected T_VARIABLE in /home/kongl/syndb/www/sdb_nats.php on line 52
1Q63HQ2_HUMAN*   Trembl (?) | Description Local Annotation Link Reference
General Information
NameN/A
DescriptionHypothetical protein dkfzp686o1697.
SpeciesHomo sapiens (NCBI taxonomy ID: 9606)
GO0005509 calcium ion binding (IEA)
Domain Architecture (Details)
InterPro domains assigned to SynO:
Laminins are large heterotrimeric glycoproteins involved in basement membrane function . The laminin globular (G) domain can be found in one to several copies in various laminin family members.ncluding a large number of extracellular proteins. The C-terminus of the laminin alpha chain contains a tandem repeat of five laminin G domains.hich are critical for heparin-binding and cell attachment activity . Laminin alpha4 is distributed in a variety of tissues including peripheral nerves.orsal root ganglion.keletal muscle and capillaries; in the neuromuscular junction.t is required for synaptic specialisation . The structure of the laminin-G domain has been predicted to resemble that of pentraxin .Laminin G domains can vary in their function.nd a variety of binding functions have been ascribed to different LamG modules. For example.he laminin alpha1 and alpha2 chains each have five C-teminal laminin G domains.here only domains LG4 and LG5 contain binding sites for heparin.ulphatides and the cell surface receptor dystroglycan . Laminin G-containing proteins appear to have a wide variety of roles in cell adhesion.ignalling.igration.ssembly and differentiation. Proteins with laminin-G domains include:Laminin.Merosin.Agrin.Neurexins.Vitamin K dependent protein S.Sex steroid binding protein SBP/SHBG.Drosophila proteins Slit.rumbs.at.several proteoglycan precursors.
  IPR001791:Laminin G
InterPro domains unassigned to SynO:
Laminins are large heterotrimeric glycoproteins involved in basement membrane function . The laminin globular (G) domain can be found in one to several copies in various laminin family members.ncluding a large number of extracellular proteins. The C-terminus of the laminin alpha chain contains a tandem repeat of five laminin G domains.hich are critical for heparin-binding and cell attachment activity . Laminin alpha4 is distributed in a variety of tissues including peripheral nerves.orsal root ganglion.keletal muscle and capillaries; in the neuromuscular junction.t is required for synaptic specialisation . The structure of the laminin-G domain has been predicted to resemble that of pentraxin . Laminin G domains can vary in their function.nd a variety of binding functions have been ascribed to different LamG modules. For example.he laminin alpha1 and alpha2 chains each have five C-teminal laminin G domains.here only domains LG4 and LG5 contain binding sites for heparin.ulphatides and the cell surface receptor dystroglycan . Laminin G-containing proteins appear to have a wide variety of roles in cell adhesion.ignalling.igration.ssembly and differentiation. This entry represents one subtype of laminin G domains.hich is sometimes found in association with thrombospondin-type laminin G domains ().
  IPR012680:Laminin G, subdomain 2
Laminins are large heterotrimeric glycoproteins involved in basement membrane function . The laminin globular (G) domain can be found in one to several copies in various laminin family members.hich includes a large number of extracellular proteins. The C-terminus of laminin alpha chain contains a tandem repeat of five laminin G domains.hich are critical for heparin-binding and cell attachment activity . Laminin alpha4 is distributed in a variety of tissues including peripheral nerves.orsal root ganglion.keletal muscle and capillaries; in the neuromuscular junction.t is required for synaptic specialisation . The structure of the laminin-G domain has been predicted to resemble that of pentraxin . Laminin G domains can vary in their function.nd a variety of binding functions has been ascribed to different LamG modules. For example.he laminin alpha1 and alpha2 chains each has five C-teminal laminin G domains.here only domains LG4 and LG5 contain binding sites for heparin.ulphatides and the cell surface receptor dystroglycan . Laminin G-containing proteins appear to have a wide variety of roles in cell adhesion.ignalling.igration.ssembly and differentiation. This entry represents one subtype of laminin G domains.hich is sometimes found in association with thrombospondin-type laminin G domains ().
  IPR012679:Laminin G, subdomain 1
Fibronectins are multi-domain glycoproteins found in a soluble form in plasma.nd in an insoluble form in loose connective tissue and basement membranes . They contain multiple copies of 3 repeat regions (types I.I and III).hich bind to a variety of substances including heparin.ollagen.NA.ctin.ibrin and fibronectin receptors on cell surfaces. The wide variety of these substances means that fibronectins are involved in a number of important functions: e.g..ound healing; cell adhesion; blood coagulation; cell differentiation and migration; maintenance of the cellular cytoskeleton; and tumour metastasis . The role of fibronectin in cell differentiation is demonstrated by the marked reduction in the expression of its gene when neoplastic transformation occurs. Cell attachment has been found to be mediated by the binding of the tetrapeptide RGDS to integrins on the cell surface .lthough related sequences can also display cell adhesion activity.Plasma fibronectin occurs as a dimer of 2 different subunits.inked together by 2 disulphide bonds near the C-terminus. The difference in the 2 chains occurs in the type III repeat region and is caused by alternative splicing of the mRNA from one gene . The observation that.n a given protein.n individual repeat of one of the 3 types (e.g..he first FnIII repeat) shows much less similarity to its subsequent tandem repeats within that protein than to its equivalent repeat between fibronectins from other species.as suggested that the repeating structure of fibronectin arose at an early stage of evolution. It also seems to suggest that the structure is subject to high selective pressure .The fibronectin type III repeat region is an approximately 100 amino acid domain.ifferent tandem repeats of which contain binding sites for DNA.eparin and the cell surface . The superfamily of sequences believed to contain FnIII repeats represents 45 different families.he majority of which are involved in cell surface binding in some manner.r are receptor protein tyrosine kinases.r cytokine receptors.
  IPR003961:Fibronectin, type III
A sequence of about thirty to forty amino-acid residues long found in the sequence of epidermal growth factor (EGF)has been shown to be present.n a moreor less conserved form.n a large number of other.ostly animal proteins. The list of proteins currently known tocontain one or more copies of an EGF-like pattern is large and varied. The functional significance of EGF domains inwhat appear to be unrelated proteins is not yet clear. However. common feature is that these repeats are found inthe extracellular domain of membrane-bound proteins or in proteins known to be secreted (exception: prostaglandinG/H synthase). The EGF domain includes six cysteine residues which have been shown (in EGF) to be involved in disulphidebonds. The main structure is a two-stranded beta-sheet followed by a loop to a C-terminal short two-stranded sheet.Subdomains between the conserved cysteines vary in length.
  IPR006209:EGF-like
Fibronectins are multi-domain glycoproteins found in a soluble form in plasma.nd in an insoluble form in loose connective tissue and basement membranes . They contain multiple copies of 3 repeat regions (types I.I and III).hich bind to a variety of substances including heparin.ollagen.NA.ctin.ibrin and fibronectin receptors on cell surfaces. The wide variety of these substances means that fibronectins are involved in a number of important functions: e.g..ound healing; cell adhesion; blood coagulation; cell differentiation and migration; maintenance of the cellular cytoskeleton; and tumour metastasis . The role of fibronectin in cell differentiation is demonstrated by the marked reduction in the expression of its gene when neoplastic transformation occurs. Cell attachment has been found to be mediated by the binding of the tetrapeptide RGDS to integrins on the cell surface .lthough related sequences can also display cell adhesion activity.Plasma fibronectin occurs as a dimer of 2 different subunits.inked together by 2 disulphide bonds near the C-terminus. The difference in the 2 chains occurs in the type III repeat region and is caused by alternative splicing of the mRNA from one gene . The observation that.n a given protein.n individual repeat of one of the 3 types (e.g..he first FnIII repeat) shows much less similarity to its subsequent tandem repeats within that protein than to its equivalent repeat between fibronectins from other species.as suggested that the repeating structure of fibronectin arose at an early stage of evolution. It also seems to suggest that the structure is subject to high selective pressure .The fibronectin type III repeat region is an approximately 100 amino acid domain.ifferent tandem repeats of which contain binding sites for DNA.eparin and the cell surface . The superfamily of sequences believed to contain FnIII repeats represents 45 different families.he majority of which are involved in cell surface binding in some manner.r are receptor protein tyrosine kinases.r cytokine receptors.
  IPR003962:Fibronectin, type III subdomain
Fibronectin is composed of three repeating structural motifs.f which one is the FnIII module. The three modules form a linear sequence of multiple tandem copies connected by short linker peptides. The secondary structure of the FnIII10 module.hich is the only fibronectin module to possess an integrin binding RGD motif.onsists of two beta-sheets containing the antiparallel beta-strands ABE and DCFG.espectively.hich fold up to form a beta-sandwich. The RGD sequence is located in the loop connecting the beta-strands .The SSF signature in this entry is currently under review. Please be aware that some of the protein hits may be false positives.
  IPR008957:Fibronectin, type III-like fold
Lectins and glucanases exhibit the common property of reversibly binding to specific complex carbohydrates. The lectins/glucanases are a diverse group of proteins found in a wide range of species from prokaryotes to humans. The different family members all contain a concanavalin A-like domain.hich consists of a sandwich of 12-14 beta strands in two sheets with a complex topology. Members of this family are diverse.nd include the lectins: legume lectins.ereal lectins.iral lectins.nd animal lectins. Plant lectins function in the storage and transport of carbohydrates in seeds.he binding of nitrogen-fixing bacteria to root hairs.he inhibition of fungal growth or insect feeding.nd in hormonally regulated plant growth . Protein members include concanavalin A (Con A).avin.solectin I.ectin IV.oybean agglutinin and lentil lectin. Animal lectins include the galectins.hich are S-type lactose-binding and IgE-binding proteins such as S-lectin.LC protein.alectin1.alectin2.alectin3 CRD.nd Congerin I . Other members with a Con A-like domain include the glucanases and xylanases. Bacterial and fungal beta-glucanases.uch as Bacillus 1-3.-4-beta-glucanse.arry out the acid catalysis of beta-glucans found in microorganisms and plants . Similarly.appa-Carrageenase degrades kappa-carrageenans from marine red algae cell walls . Xylanase and cellobiohydrolase I degrade hemicellulose and cellulose.espectively . There are many Con A-like domains found in proteins involved in cell recognition and adhesion. For example.everal viral and bacterial toxins carry Con A-like domains. Examples include the Clostridium neurotoxins responsible for the neuroparalytic effects of botulism and tetanus . The Pseudomonas exotoxin A. virulence factor which is highly toxic to eukaryotic cells.ausing the arrest of protein synthesis.ontains a Con A-like domain involved in receptor binding . Cholerae neuraminidase can bind to cell surfaces.ossibly through their Con A-like domains.here they function as part of a mucinase complex to degrade the mucin layer of the gastrointestinal tract . The rotaviral outer capsid protein.P4.as a Con A-like sialic acid binding domain.hich functions in cell attachment and membrane penetration . Con A-like domains also play a role in cell recognition in eukaryotes. Proteins containing a Con A-like domain include the sex hormone-binding globulins which transport sex steroids in blood and regulate their access to target tissues .aminins which are large heterotrimeric glycoproteins involved in basement membrane architecture and function .eurexins which are expressed in hundreds of isoforms on the neuronal cell surface.here they may function as cell recognition molecules and sialidases that are found in both microorganisms and animals.nd function in cell adhesion and signal transduction . Other proteins containing a Con A-like domain include pentraxins and calnexins. The pentraxin PTX3 is a TNFalpha-induced.ecreted protein of adipose cells produced during inflammation . The calnexin family of molecular chaperones is conserved among plants.ungi.nd animals. Family members include Calnexin. type-I integral membrane protein in the endoplasmic reticulum which coordinates the processing of newly synthesized N-linked glycoproteins with their productive folding.almegin. type-I membrane protein expressed mainly in the spermatids of the testis.nd calreticulin. soluble ER lumenal paralog .
  IPR008985:Concanavalin A-like lectin/glucanase
Lectins and glucanases exhibit the common property of reversibly binding to specific complex carbohydrates. The lectins/glucanases are a diverse group of proteins found in a wide range of species from prokaryotes to humans. The different family members all contain a concanavalin A-like domain.hich consists of a sandwich of 12-14 beta strands in two sheets with a complex topology. Members of this family are diverse.nd include the lectins: legume lectins.ereal lectins.iral lectins.nd animal lectins. Plant lectins function in the storage and transport of carbohydrates in seeds.he binding of nitrogen-fixing bacteria to root hairs.he inhibition of fungal growth or insect feeding.nd in hormonally regulated plant growth . Protein members include concanavalin A (Con A).avin.solectin I.ectin IV.oybean agglutinin and lentil lectin. Animal lectins include the galectins.hich are S-type lactose-binding and IgE-binding proteins such as S-lectin.LC protein.alectin1.alectin2.alectin3 CRD.nd Congerin I . Other members with a Con A-like domain include the glucanases. Bacterial and fungal beta-glucanases.uch as Bacillus 1-3.-4-beta-glucanse.arry out the acid catalysis of beta-glucans found in microorganisms and plants . Similarly.appa-Carrageenase degrades kappa-carrageenans from marine red algae cell walls . This entry differs from () by omitting the xylanases and glycosyl hydrolases.
  IPR013320:Concanavalin A-like lectin/glucanase, subgroup
Epidermal growth factors and transforming growth factors belong to a general class of proteins that share a repeat pattern involving a number of conserved Cys residues. Growth factors are involved in cell recognition and division . The repeating pattern.specially of cysteines (the so-called EGF repeat).s thought to be important to the 3D structure of the proteins.nd hence its recognition by receptors and other molecules. The type 1 EGF signature includes six conserved cysteines believed to be involved in disulphide bond formation. The EGF motif is found frequently in nature.articularly in extracellular proteins.
  IPR006210:EGF
IPR012680:Laminin_G_2 
Evalue:-41.5086364746094 
Location:868-996IPR012680:Laminin_G_2 
Evalue:-35.7958793640137 
Location:641-767IPR012679:Laminin_G_1 
Evalue:-33.0757217407227 
Location:415-546IPR003961:fn3 
Evalue:-18.4814853668213 
Location:142-228IPR003961:fn3 
Evalue:-14.6777811050415 
Location:35-126IPR006209:EGF 
Evalue:-8.55284214019775 
Location:569-601IPR006209:EGF 
Evalue:-7.11918640136719 
Location:788-819IPR000742:EGF_3 
Evalue:0 
Location:343-381
SequencesProtein: Q63HQ2_HUMAN (1017 aa)
mRNA: BX647551
Local Annotation
Synapse Ontology
A neuromuscular junction is the junction of the axon terminal of a motoneuron with the motor end plate, the highly-excitable region of muscle fiber plasma membrane responsible for initiation of action potentials across the muscle's surface.
sdb:0024 neuromuscular junction  (Evidence:domains)
KO assignmentNot mapped to KEGG
Loci Structure (Details)Loci index, Chromosomal location, Length, Possible relational loci clusterExon1: 98 residues, 38294417-38294710Exon2: 38 residues, 38373378-38373488Exon3: 30 residues, 38374556-38374640Exon4: 41 residues, 38386359-38386477Exon5: 47 residues, 38388054-38388190Exon6: 57 residues, 38406154-38406321Exon7: 40 residues, 38441984-38442100Exon8: 108 residues, 38442686-38443005Exon9: 35 residues, 38443663-38443764Exon10: 35 residues, 38444862-38444963Exon11: 50 residues, 38448362-38448507Exon12: 65 residues, 38453924-38454114Exon13: 44 residues, 38460825-38460951Exon14: 83 residues, 38462867-38463111Exon15: 39 residues, 38467035-38467147Exon16: 41 residues, 38470995-38471112Exon17: 62 residues, 38474133-38474314Exon18: 10 residues, 38481537-38481561Exon19: 28 residues, 38484159-38484238Exon20: 50 residues, 38487173-38487317Exon21: 30 residues, 38494169-38494253Exon22: 36 residues, 38498766-38498870Exon23: 240 residues, 38499690-38500405Exon24: 2 residues, -Jump to Q63HQ2_HUMAN  
Tune and view alternative isoforms