SynDB Home Page
SynDB Home Page
Browse
Search
Download
Help
People
links

blue bulletSynDB protein details  


Parse error: syntax error, unexpected T_VARIABLE in /home/kongl/syndb/www/sdb_nats.php on line 52
0IRK6_HUMAN*   SwissProt (?) | Description Local Annotation Link Reference
General Information
NameKCNJ6
DescriptionG protein-activated inward rectifier potassium channel 2 (girk2) (potassium channel, inwardly rectifying subfamily j member 6) (inward rectifier k(+) channel kir3.2) (katp-2) (bir1).
SpeciesHomo sapiens (NCBI taxonomy ID: 9606)
GO0008076 voltage-gated potassium channel complex (TAS)
0015467 G-protein activated inward rectifier potass... (TAS)
0006813 potassium ion transport (TAS)

Warning: fopen(/home/kongl/syndb/www/temp/744601150.dot) [function.fopen]: failed to open stream: Permission denied in /home/kongl/syndb/www/sdb_pro.php on line 269

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 270

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 271

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 272

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 273

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 274

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 299

Warning: fclose(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 300
schematic display of those terms with internal associations, click the node and browse the corresponding GO term
Domain Architecture (Details)
InterPro domains assigned to SynO:
Inwardly-rectifying K+ channels (Kir) are the principal class of two-TM domain K+ channels. They are characterised by the property of inward-rectification.hich is described as the ability to allow large inward currents and smaller outward currents. Inwardly rectifying potassium channels (Kir) are responsible for regulating diverse processes including: cellular excitability.ascular tone.eart rate.enal salt flow.nd insulin release . To date.round twenty members of this superfamily have been cloned.hich can be grouped into six families by sequence similarity.nd these are designated Kir1.x-6.x . Cloned Kir channel cDNAs encode proteins of between ~370-500 residues.oth N- and C-termini are thought to be cytoplasmic.nd the N-terminus lacks a signal sequence. Kir channel alpha subunits possess only 2TM domains linked with a P-domain. Thus.ir channels share similarity with the fifth and sixth domains.nd P-domain of the other families. It is thought that four Kir subunits assemble to form a tetrameric channel complex.hich may be hetero- or homomeric .Potassium channels are the most diverse group of the ion channel family. They are important in shaping the action potential.nd in neuronal excitability and plasticity . The potassium channel family iscomposed of several functionally distinct isoforms.hich can be broadlyseparated into 2 groups : the practically non-inactivating delayed group and the rapidly inactivating transient group.These are all highly similar proteins.ith only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism.hannel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter.ogether with intracellular kinases; and others are regulated by GTP-binding proteins orother second messengers . In eukaryotic cells.+ channelsare involved in neural signalling and generation of the cardiac rhythm.ct as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes . In prokaryotic cells.hey play a role in themaintenance of ionic homeostasis . All K+ channels discovered so far possess a core of alpha subunits.ach comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG).hich hasbeen termed the K+ selectivity sequence.In families that contain one P-domain.our subunits assemble to form a selective pathway for K+ across the membrane.However.t remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK.K and SK). The 2TM domain family comprises inward-rectifying K+ channels. In addition.here are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.The Kir3.x channel family is gated by G-proteins following G-protein coupled receptor (GPCR) activation. They are widely distributed in neuronal.trial.nd endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials.lowing the heart rate and modulating hormone release. They are directly activated by G-protein beta-gamma subunits released from G-protein heterotrimers of the G(i/o) family upon appropriate receptor stimulation.Kir3.2 is thought to associate with Kir3.1 to form Kir channel heteromers in heart tissue. In central neurones.ir3.2 homomers may exist.lthough these may contain combinations of the three splice variants of Kir3.2 that have been identified . Weaver mice.hich suffer neurological and reproductive deficits.ave a point mutation in the gene encoding Kir3.2. This lies in the pore-forming domain of the channel.nd as a result they lose their selectivity for K+.llowing Na+ to pass through the channel pore .
  IPR003275:Kir3.2 inward rectifier K+ channel
InterPro domains unassigned to SynO:
Inwardly-rectifying K+ channels (Kir) are the principal class of two-TM domain K+ channels. They are characterised by the property of inward-rectification.hich is described as the ability to allow large inward currents and smaller outward currents. Inwardly rectifying potassium channels (Kir) are responsible for regulating diverse processes including: cellular excitability.ascular tone.eart rate.enal salt flow.nd insulin release . To date.round twenty members of this superfamily have been cloned.hich can be grouped into six families by sequence similarity.nd these are designated Kir1.x-6.x . Cloned Kir channel cDNAs encode proteins of between ~370-500 residues.oth N- and C-termini are thought to be cytoplasmic.nd the N-terminus lacks a signal sequence. Kir channel alpha subunits possess only 2TM domains linked with a P-domain. Thus.ir channels share similarity with the fifth and sixth domains.nd P-domain of the other families. It is thought that four Kir subunits assemble to form a tetrameric channel complex.hich may be hetero- or homomeric .Potassium channels are the most diverse group of the ion channel family. They are important in shaping the action potential.nd in neuronal excitability and plasticity . The potassium channel family iscomposed of several functionally distinct isoforms.hich can be broadlyseparated into 2 groups : the practically non-inactivating delayed group and the rapidly inactivating transient group.These are all highly similar proteins.ith only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism.hannel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter.ogether with intracellular kinases; and others are regulated by GTP-binding proteins orother second messengers . In eukaryotic cells.+ channelsare involved in neural signalling and generation of the cardiac rhythm.ct as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes . In prokaryotic cells.hey play a role in themaintenance of ionic homeostasis . All K+ channels discovered so far possess a core of alpha subunits.ach comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG).hich hasbeen termed the K+ selectivity sequence.In families that contain one P-domain.our subunits assemble to form a selective pathway for K+ across the membrane.However.t remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK.K and SK). The 2TM domain family comprises inward-rectifying K+ channels. In addition.here are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.
  IPR013521:K+ channel, inward rectifier, conserved region 2
Inwardly-rectifying K+ channels (Kir) are the principal class of two-TM domain K+ channels. They are characterised by the property of inward-rectification.hich is described as the ability to allow large inward currents and smaller outward currents. Inwardly rectifying potassium channels (Kir) are responsible for regulating diverse processes including: cellular excitability.ascular tone.eart rate.enal salt flow.nd insulin release . To date.round twenty members of this superfamily have been cloned.hich can be grouped into six families by sequence similarity.nd these are designated Kir1.x-6.x . Cloned Kir channel cDNAs encode proteins of between ~370-500 residues.oth N- and C-termini are thought to be cytoplasmic.nd the N-terminus lacks a signal sequence. Kir channel alpha subunits possess only 2TM domains linked with a P-domain. Thus.ir channels share similarity with the fifth and sixth domains.nd P-domain of the other families. It is thought that four Kir subunits assemble to form a tetrameric channel complex.hich may be hetero- or homomeric .Potassium channels are the most diverse group of the ion channel family. They are important in shaping the action potential.nd in neuronal excitability and plasticity . The potassium channel family iscomposed of several functionally distinct isoforms.hich can be broadlyseparated into 2 groups : the practically non-inactivating delayed group and the rapidly inactivating transient group.These are all highly similar proteins.ith only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism.hannel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter.ogether with intracellular kinases; and others are regulated by GTP-binding proteins orother second messengers . In eukaryotic cells.+ channelsare involved in neural signalling and generation of the cardiac rhythm.ct as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes . In prokaryotic cells.hey play a role in themaintenance of ionic homeostasis . All K+ channels discovered so far possess a core of alpha subunits.ach comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG).hich hasbeen termed the K+ selectivity sequence.In families that contain one P-domain.our subunits assemble to form a selective pathway for K+ across the membrane.However.t remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK.K and SK). The 2TM domain family comprises inward-rectifying K+ channels. In addition.here are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.
  IPR001838:K+ channel, inward rectifier
Inwardly-rectifying K+ channels (Kir) are the principal class of two-TM domain K+ channels. They are characterised by the property of inward-rectification.hich is described as the ability to allow large inward currents and smaller outward currents. Inwardly rectifying potassium channels (Kir) are responsible for regulating diverse processes including: cellular excitability.ascular tone.eart rate.enal salt flow.nd insulin release . To date.round twenty members of this superfamily have been cloned.hich can be grouped into six families by sequence similarity.nd these are designated Kir1.x-6.x . Cloned Kir channel cDNAs encode proteins of between ~370-500 residues.oth N- and C-termini are thought to be cytoplasmic.nd the N-terminus lacks a signal sequence. Kir channel alpha subunits possess only 2TM domains linked with a P-domain. Thus.ir channels share similarity with the fifth and sixth domains.nd P-domain of the other families. It is thought that four Kir subunits assemble to form a tetrameric channel complex.hich may be hetero- or homomeric .Potassium channels are the most diverse group of the ion channel family. They are important in shaping the action potential.nd in neuronal excitability and plasticity . The potassium channel family iscomposed of several functionally distinct isoforms.hich can be broadlyseparated into 2 groups : the practically non-inactivating delayed group and the rapidly inactivating transient group.These are all highly similar proteins.ith only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism.hannel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter.ogether with intracellular kinases; and others are regulated by GTP-binding proteins orother second messengers . In eukaryotic cells.+ channelsare involved in neural signalling and generation of the cardiac rhythm.ct as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes . In prokaryotic cells.hey play a role in themaintenance of ionic homeostasis . All K+ channels discovered so far possess a core of alpha subunits.ach comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG).hich hasbeen termed the K+ selectivity sequence.In families that contain one P-domain.our subunits assemble to form a selective pathway for K+ across the membrane.However.t remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK.K and SK). The 2TM domain family comprises inward-rectifying K+ channels. In addition.here are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.
  IPR013518:K+ channel, inward rectifier, conserved region 1
IPR013521:IRK 
Evalue:-244.568634033203 
Location:57-402IPR003275:KIR32CHANNEL 
Evalue:0 
Location:28-48IPR003275:KIR32CHANNEL 
Evalue:0 
Location:1-15
SequencesProtein: IRK6_HUMAN (423 aa)
mRNA: NM_002240
Local Annotation
Synapse Ontology
A process that increases short-term neuronal synaptic plasticity, the ability of neuronal synapses to change in the short-term as circumstances require. Short-term neuronal synaptic plasticity generally involves increasing or decreasing synaptic sensitivity.
sdb:0043 positive regulation of short-term neuronal synaptic plasticity  (Evidence:keywords,domains)
this kind of receptor usually locates at the postsynaptic plasma membranous region.
sdb:0109 ionotropic receptor  (Evidence:keywords,domains)
?
sdb:0265 cAMP mediated STP  (Evidence:keywords,domains)
K channel plays an important role in the course of action potential
sdb:0286 K channel  (Evidence:keywords,domains)
all kinds of ion channels that play their roles in the synaptic activity.
sdb:0308 ion channels and receptors  (Evidence:keywords,domains)
?
sdb:0328 transmitters release and endocytosis  (Evidence:keywords,domains)
KO assignmentK05000
  Level 3 annotation:
    potassium inwardly-rectifying channel, subfamily J, member 6
  Level 2 annotation:
    Ion channels
Loci Structure (Details)Loci index, Chromosomal location, Length, Possible relational loci clusterExon1: 334 residues, 37918656-37919656Exon2: 309 residues, 38008383-38009304Exon3: 19 residues, 38134829-38134881Exon4: 172 residues, 38210056-38210566Exon5: 2 residues, -Jump to IRK6_HUMAN  
Tune and view alternative isoforms