SynDB Home Page
SynDB Home Page
Browse
Search
Download
Help
People
links

blue bulletSynDB protein details  


Parse error: syntax error, unexpected T_VARIABLE in /home/kongl/syndb/www/sdb_nats.php on line 52
0IRK14_HUMAN*   SwissProt (?) | Description Local Annotation Link Reference
General Information
NameKCNJ14
DescriptionAtp-sensitive inward rectifier potassium channel 14 (potassium channel, inwardly rectifying subfamily j member 14) (inward rectifier k(+) channel kir2.4) (irk4).
SpeciesHomo sapiens (NCBI taxonomy ID: 9606)
GO0008076 voltage-gated potassium channel complex (TAS)
0005242 inward rectifier potassium channel activity (TAS)

Warning: fopen(/home/kongl/syndb/www/temp/2077440181.dot) [function.fopen]: failed to open stream: Permission denied in /home/kongl/syndb/www/sdb_pro.php on line 269

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 270

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 271

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 272

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 273

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 274

Warning: fwrite(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 299

Warning: fclose(): supplied argument is not a valid stream resource in /home/kongl/syndb/www/sdb_pro.php on line 300
schematic display of those terms with internal associations, click the node and browse the corresponding GO term
Domain Architecture (Details)
InterPro domains unassigned to SynO:
Inwardly-rectifying K+ channels (Kir) are the principal class of two-TM domain K+ channels. They are characterised by the property of inward-rectification.hich is described as the ability to allow large inward currents and smaller outward currents. Inwardly rectifying potassium channels (Kir) are responsible for regulating diverse processes including: cellular excitability.ascular tone.eart rate.enal salt flow.nd insulin release . To date.round twenty members of this superfamily have been cloned.hich can be grouped into six families by sequence similarity.nd these are designated Kir1.x-6.x . Cloned Kir channel cDNAs encode proteins of between ~370-500 residues.oth N- and C-termini are thought to be cytoplasmic.nd the N-terminus lacks a signal sequence. Kir channel alpha subunits possess only 2TM domains linked with a P-domain. Thus.ir channels share similarity with the fifth and sixth domains.nd P-domain of the other families. It is thought that four Kir subunits assemble to form a tetrameric channel complex.hich may be hetero- or homomeric .Potassium channels are the most diverse group of the ion channel family. They are important in shaping the action potential.nd in neuronal excitability and plasticity . The potassium channel family iscomposed of several functionally distinct isoforms.hich can be broadlyseparated into 2 groups : the practically non-inactivating delayed group and the rapidly inactivating transient group.These are all highly similar proteins.ith only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism.hannel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter.ogether with intracellular kinases; and others are regulated by GTP-binding proteins orother second messengers . In eukaryotic cells.+ channelsare involved in neural signalling and generation of the cardiac rhythm.ct as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes . In prokaryotic cells.hey play a role in themaintenance of ionic homeostasis . All K+ channels discovered so far possess a core of alpha subunits.ach comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG).hich hasbeen termed the K+ selectivity sequence.In families that contain one P-domain.our subunits assemble to form a selective pathway for K+ across the membrane.However.t remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK.K and SK). The 2TM domain family comprises inward-rectifying K+ channels. In addition.here are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.
  IPR013521:K+ channel, inward rectifier, conserved region 2
Inwardly-rectifying K+ channels (Kir) are the principal class of two-TM domain K+ channels. They are characterised by the property of inward-rectification.hich is described as the ability to allow large inward currents and smaller outward currents. Inwardly rectifying potassium channels (Kir) are responsible for regulating diverse processes including: cellular excitability.ascular tone.eart rate.enal salt flow.nd insulin release . To date.round twenty members of this superfamily have been cloned.hich can be grouped into six families by sequence similarity.nd these are designated Kir1.x-6.x . Cloned Kir channel cDNAs encode proteins of between ~370-500 residues.oth N- and C-termini are thought to be cytoplasmic.nd the N-terminus lacks a signal sequence. Kir channel alpha subunits possess only 2TM domains linked with a P-domain. Thus.ir channels share similarity with the fifth and sixth domains.nd P-domain of the other families. It is thought that four Kir subunits assemble to form a tetrameric channel complex.hich may be hetero- or homomeric .Potassium channels are the most diverse group of the ion channel family. They are important in shaping the action potential.nd in neuronal excitability and plasticity . The potassium channel family iscomposed of several functionally distinct isoforms.hich can be broadlyseparated into 2 groups : the practically non-inactivating delayed group and the rapidly inactivating transient group.These are all highly similar proteins.ith only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism.hannel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter.ogether with intracellular kinases; and others are regulated by GTP-binding proteins orother second messengers . In eukaryotic cells.+ channelsare involved in neural signalling and generation of the cardiac rhythm.ct as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes . In prokaryotic cells.hey play a role in themaintenance of ionic homeostasis . All K+ channels discovered so far possess a core of alpha subunits.ach comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG).hich hasbeen termed the K+ selectivity sequence.In families that contain one P-domain.our subunits assemble to form a selective pathway for K+ across the membrane.However.t remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK.K and SK). The 2TM domain family comprises inward-rectifying K+ channels. In addition.here are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.
  IPR001838:K+ channel, inward rectifier
Inwardly-rectifying K+ channels (Kir) are the principal class of two-TM domain K+ channels. They are characterised by the property of inward-rectification.hich is described as the ability to allow large inward currents and smaller outward currents. Inwardly rectifying potassium channels (Kir) are responsible for regulating diverse processes including: cellular excitability.ascular tone.eart rate.enal salt flow.nd insulin release . To date.round twenty members of this superfamily have been cloned.hich can be grouped into six families by sequence similarity.nd these are designated Kir1.x-6.x . Cloned Kir channel cDNAs encode proteins of between ~370-500 residues.oth N- and C-termini are thought to be cytoplasmic.nd the N-terminus lacks a signal sequence. Kir channel alpha subunits possess only 2TM domains linked with a P-domain. Thus.ir channels share similarity with the fifth and sixth domains.nd P-domain of the other families. It is thought that four Kir subunits assemble to form a tetrameric channel complex.hich may be hetero- or homomeric .Potassium channels are the most diverse group of the ion channel family. They are important in shaping the action potential.nd in neuronal excitability and plasticity . The potassium channel family iscomposed of several functionally distinct isoforms.hich can be broadlyseparated into 2 groups : the practically non-inactivating delayed group and the rapidly inactivating transient group.These are all highly similar proteins.ith only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism.hannel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter.ogether with intracellular kinases; and others are regulated by GTP-binding proteins orother second messengers . In eukaryotic cells.+ channelsare involved in neural signalling and generation of the cardiac rhythm.ct as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes . In prokaryotic cells.hey play a role in themaintenance of ionic homeostasis . All K+ channels discovered so far possess a core of alpha subunits.ach comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG).hich hasbeen termed the K+ selectivity sequence.In families that contain one P-domain.our subunits assemble to form a selective pathway for K+ across the membrane.However.t remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK.K and SK). The 2TM domain family comprises inward-rectifying K+ channels. In addition.here are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.
  IPR013518:K+ channel, inward rectifier, conserved region 1
IPR013521:IRK 
Evalue:-219.086181640625 
Location:53-394
SequencesProtein: IRK14_HUMAN (436 aa)
mRNA: NM_170720
Local Annotation
Synapse Ontology
A process that increases long-term neuronal synaptic plasticity, the ability of neuronal synapses to change long-term as circumstances require. Long-term neuronal synaptic plasticity generally involves increase or decrease in actual synapse numbers.
sdb:0039 positive regulation of long-term neuronal synaptic plasticity  (Evidence:keywords)
KO assignmentK05007
  Level 3 annotation:
    potassium inwardly-rectifying channel, subfamily J, member 14
  Level 2 annotation:
    Ion channels
Loci Structure (Details)Loci index, Chromosomal location, Length, Possible relational loci clusterExon1: 397 residues, 53656317-53657507Exon2: 645 residues, 53659249-53661179Exon3: 2 residues, -Jump to IRK14_HUMAN  
Tune and view alternative isoforms
Loci Cluster (Details)Loci: 3124 53589943-53639205 ~-49K 19224(GRIN2D)(+)Loci: 3125 53656317-53661179 ~-5K 19226(KCNJ14)(+)Loci: 3126 53747240-53794495 ~-47K 19229(SULT2B1)(+)Loci: 4406 53833083-53841263 ~-8K 19240(CA11)(-)Loci: 4407 53990131-54006113 ~-16K 19255(BCAT2)(-)Loci: 4408 54262487-54268010 ~-6K 19284(-)Loci: 3127 54309429-54313528 ~-4K 19290(LIN7B)(+)Loci: 3128 54314474-54346090 ~-32K 19292(PPFIA3)(+)Loci: 4409 54484705-54520286 ~-36K 19297(SLC6A16)(-)Loci: 3129 54669297-54681299 ~-12K 19311(FLT3LG)(+)Loci: 4410 54854641-54860926 ~-6K 19323(IRF3)(-)Loci: 3130 54886218-54908800 ~-23K 19334(CPT1C)(+)Loci: 3131 54961991-55002179 ~-40K 19337(AP2A1)(+)Loci: 3132 55124271-55129003 ~-5K 19355(ATF5)(+)Loci: 4411 55510576-55524446 ~-14K 19365(KCNC3)(-)Loci: 4412 55817047-55833114 ~-16K 19382(SYT3)(-)Loci: 4413 55856895-55912007 ~-55K 19383(SHANK1)(-)Loci: 3123 53559468-53571439 ~-12K 19220(SYNGR4)(+)Link out to UCSC